Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Série IPHT-PHM
Domaines math-ph
Date Lundi 7 Octobre 2024
Heure 11:00
Institut IPHT
Salle Salle Claude Itzykson, Bât. 774
Nom de l'orateur Alexandre Odesski
Prenom de l'orateur
Addresse email de l'orateur
Institution de l'orateur IHES and Brock Univ.
Titre "When the Fourier transform is one loop exact?"
Résumé We investigate the question: for which functions $f(x_1,...,x_n),~g(x_1,...,x_n)$ the asymptotic expansion of the integral $\int g(x_1,...,x_n) e^{\frac{f(x_1,...,x_n) x_1y_1 \dots x_ny_n}{\hbar}}dx_1...dx_n$ consists only of the first term. We reveal a hidden projective invariance of the problem which establishes its relation with geometry of projective hypersurfaces of the form $\{(1:x_1:...:x_n:f)\}$. We also construct various examples, in particular we prove that Kummer surface in $P^3$ gives a solution to our problem. This is a joint work with Maxim Kontsevich.
Numéro de preprint arXiv
Commentaires
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]