Statut | Confirmé |
Série | IPHT-PHM |
Domaines | math-ph |
Date | Lundi 7 Octobre 2024 |
Heure | 11:00 |
Institut | IPHT |
Salle | Salle Claude Itzykson, Bât. 774 |
Nom de l'orateur | Alexandre Odesski |
Prenom de l'orateur | |
Addresse email de l'orateur | |
Institution de l'orateur | IHES and Brock Univ. |
Titre | "When the Fourier transform is one loop exact?" |
Résumé | We investigate the question: for which functions $f(x_1,...,x_n),~g(x_1,...,x_n)$ the asymptotic expansion of the integral $\int g(x_1,...,x_n) e^{\frac{f(x_1,...,x_n) x_1y_1 \dots x_ny_n}{\hbar}}dx_1...dx_n$ consists only of the first term. We reveal a hidden projective invariance of the problem which establishes its relation with geometry of projective hypersurfaces of the form $\{(1:x_1:...:x_n:f)\}$. We also construct various examples, in particular we prove that Kummer surface in $P^3$ gives a solution to our problem. This is a joint work with Maxim Kontsevich. |
Numéro de preprint arXiv | |
Commentaires | |
Fichiers attachés |
Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]
|
[ English version ] |