Statut | Confirmé |
Série | SEM-DARBOUX |
Domaines | math.NT |
Date | Jeudi 10 Octobre 2019 |
Heure | 11:00 |
Institut | LPTHE |
Salle | bibliothèque du LPTHE, tour 13-14, 4eme étage |
Nom de l'orateur | Chenevier |
Prenom de l'orateur | Gaetan |
Addresse email de l'orateur | gaetan [dot] chenevier [at] math [dot] cnrs [dot] fr |
Institution de l'orateur | Institut de Mathématique d'Orsay |
Titre | An introduction to the Langlands conjectures |
Résumé | Automorphic forms are highly symmetric special functions which appear in the harmonic analysis of the space of L^2 functions on G/H, where G is a semisimple Lie group and H a discrete subgroup of G -- or lattice-- of arithmetic nature. Classical incarnations of these objects include for instance modular forms (elliptic, Siegel, Hilbert, Picard...) or Maass forms, and have proved to be of fundamental importance in several branches of mathematics (number theory, motives, moduli spaces, euclidean lattices...). In this colloquium style talk, I will try to explain what the famous Langlands conjectures predict about automorphic forms. |
Numéro de preprint arXiv | |
Commentaires | |
Fichiers attachés |
Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]
|
[ English version ] |