|
Statut |
Confirmé |
|
Série |
SEM-DARBOUX |
|
Domaines |
hep-th,math.AG |
|
Date |
Jeudi 7 Mars 2024 |
|
Heure |
11:00 |
|
Institut |
LPTHE |
|
Salle |
bibliothèque du LPTHE, tour 13-14, 4eme étage |
|
Nom de l'orateur |
Padurariu |
|
Prenom de l'orateur |
Tudor |
|
Addresse email de l'orateur |
|
|
Institution de l'orateur |
Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay |
|
Titre |
Quasi-BPS categories for K3 surfaces |
|
Résumé |
BPS invariants and cohomology are central objects in the study of (Kontsevich-
Soibelman) Hall algebras or in enumerative geometry of Calabi-Yau 3-folds.
In joint work with Yukinobu Toda, we introduce a categorical version of BPS
cohomology for local K3 surfaces, called quasi-BPS categories. When the weight and
the Mukai vector are coprime, the quasi-BPS category is smooth, proper, and with
trivial Serre functor etale locally on the good moduli space. Thus quasi-BPS
categories provide (twisted) categorical (etale locally) crepant resolutions of
the moduli space of semistable sheaves on a K3 surface for generic stability
condition and a general Mukai vector. Time permitting, I will also discuss a
categorical version of the \chi-independence phenomenon for BPS invariants. |
|
Numéro de preprint arXiv |
|
|
Commentaires |
|
|
Fichiers attachés |
|