Statut | Confirmé |
Série | SEM-DARBOUX |
Domaines | hep-th |
Date | Jeudi 9 Janvier 2025 |
Heure | 11:00 |
Institut | LPTHE |
Salle | bibliothèque du LPTHE, tour 13-14, 4eme étage |
Nom de l'orateur | Dupont |
Prenom de l'orateur | Clément |
Addresse email de l'orateur | |
Institution de l'orateur | Montpellier |
Titre | Logarithmically divergent integrals |
Résumé | Among all divergent integrals, the ones that behave like dt/t near t=0, called « logarithmically divergent », are arguably the simplest, and play a very special role. In this talk I will explain how the art (known as « logarithmic regularization ») of assigning a finite value to those integrals can be turned into a well-structured theory of integration which naturally generalizes the classical theory of integration on manifolds. I will also present some questions from physics which motivated this work, ranging from deformation quantization of Poisson manifolds to string amplitudes (joint work with Erik Panzer and Brent Pym). |
Numéro de preprint arXiv | 2312.17720 |
Commentaires | |
Fichiers attachés |
Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]
|
[ English version ] |