Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Série SEM-LPTMC
Domaines cond-mat
Date Jeudi 13 Fevrier 2025
Heure 14:00
Institut LPTMC
Salle campus Jussieu, couloir 12-13, 5ème étage, salle 5-23
Nom de l'orateur Regnault
Prenom de l'orateur Nicolas
Addresse email de l'orateur
Institution de l'orateur Flatiron institute
Titre Engineering quantum phases of matter through moire materials: The case of Fractional Chern insulators
Résumé Progress in stacking two dimensional materials, such as graphene or transition metal dichalcogenides (TMDs), has paved the way to engineer new structures relying on moire patterns. These patterns induced for example by slightly twisting one layer compared to the other, could lead to strongly correlated quantum phases such as superconductivity or the quantum anomalous Hall effects. In the realm of condensed matter physics, the fractional quantum Hall effect stands as a singular experimental manifestation of topological order, characterized by the presence of anyons—quasiparticles that bear fractional charge and exhibit exchange statistics diverging from conventional fermions and bosons. This phenomenon, observed over four decades ago, was still missing the direct observation of similar topological orders arising purely from band structure—without the application of strong magnetic fields. In 2023 within the span of a few months, several pioneering experiments have illuminated this once theoretical domain. Studies on twisted homobilayer MoTe2 and pentalayer rhombohedral graphene placed on hBN have finally unveiled the existence of fractional Chern insulators (FCIs), the zero-magnetic field analog of fractional quantum Hall states. The journey to this point, preceded by over a decade of theoretical frameworks and predictions surrounding FCIs, yet the experimental revelations have proved to be richer and more surprising than expected. In this talk, we will present how the combination of ab-initio and quantum many-body calculations can help us capture the different features observed in experiments. We will discuss the potential future for this exciting booming field, including the possible observation of fractional topological insulators, a yet-never observed topological ordered phase preserving the time reversal symmetry.
Numéro de preprint arXiv
Commentaires
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]