Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Série SEED
Domaines math-ph
Date Mercredi 12 Fevrier 2025
Heure 16:15
Institut IHP
Salle Amphi Choquet-Bruhat (batiment Perrin)
Nom de l'orateur Papon
Prenom de l'orateur Léonie
Addresse email de l'orateur
Institution de l'orateur Durham University, UK
Titre Interface scaling limit for the critical planar Ising model perturbed by a magnetic field
Résumé In this talk, I will consider the interface separating +1 and -1 spins in the critical planar Ising model with Dobrushin boundary conditions perturbed by an external magnetic field. I will prove that this interface has a scaling limit. This result holds when the Ising model is defined on a bounded and simply connected subgraph of $\delta\mathbb{Z}^2$, with $\delta > 0$. I will show that if the scaling of the external field is of order $\delta^{15/8}$, then, as $\delta \to 0$, the interface converges in law to a random curve whose law is conformally covariant and absolutely continuous with respect to $\text{SLE}_3$. This limiting law is a massive version of $\text{SLE}_3$ in the sense of Makarov and Smirnov and I will give an explicit expression for its Radon-Nikodym derivative with respect to $\text{SLE}_3$. I will also prove that if the scaling of the external field is of order $\delta^{15/8}g(\delta)$ with $g(\delta) \to 0$, then the interface converges in law to $\text{SLE}_3$. In contrast, I will show that if the scaling of the external field is of order $\delta^{15/8}f(\delta)$ with $f(\delta) \to \infty$, then the interface degenerates to a boundary arc.
Numéro de preprint arXiv
Commentaires
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]