Statut |
Confirmé |
Série |
SEM-DARBOUX |
Domaines |
hep-th,math.AG |
Date |
Jeudi 15 Mai 2025 |
Heure |
11:00 |
Institut |
LPTHE |
Salle |
bibliothèque du LPTHE, tour 13-14, 4eme étage |
Nom de l'orateur |
Sauvaget |
Prenom de l'orateur |
Adrien |
Addresse email de l'orateur |
|
Institution de l'orateur |
Université de Cergy-Pontoise |
Titre |
Cone surfaces in enumerative geometry |
Résumé |
In the 80s Troyanov explained that the moduli space of complex curves is
isomorphic to the moduli spaces of cone surfaces with given angle data of the
singularities. This fact allows for the construction of several interesting
geometric structures on this moduli space. I will present some of results and open
problems around the interplay between these structures and the classical complex
point of view. In particular, I will explain how to reprove Witten-Kontsevich
theorem (providing the expression of integrals of certain chern classes on the
moduli space) using the properties of the monodromy morphisms of the cone
structure.This proof is based on a generalization of the heuristic observation in
theoretical physics that the (2,p) Liouville minimal model converges to the JT
gravity theory. If time allows, I will discuss possible analogs of these results
for super surfaces. |
Numéro de preprint arXiv |
|
Commentaires |
|
Fichiers attachés |
|