Résumé |
The fundamentals of the \textit{ab-initio} Self-Consistent Gorkov Green's function (SCGGF) [1-2] approach for the investigation of low-lying energy spectrum of the semi-magic even-even nuclei are presented. In the last decade, the SCGGF method
has brought a significant renewal in the realm of ab-initio approaches to nuclear structure, marking a step
forward in the knowledge of bulk nuclear properties of even-even nuclei, such as the ones lying
along the Ar-Cr [3-4] isotopic chains. The access to the one-particle propagator
has allowed the study of ground and excited
states of neighbouring odd-A isotopes [5-6]. Nonetheless, the prediction of excited
energy levels and reduced electric and magnetic multipole transition probabilities calls for the introduction of
the polarization propagator, previously not embedded in the $\mathrm{U}(1)_Z \times \mathrm{U}(1)_N$ symmetry breaking formalism.
In quantum chemistry, present-day approaches for the description of the spectrum of medium-sized
organic molecules [7-8] are based on diagrammatic many-body Green's function theory applied to the
polarization propagator at third order in the \textit{algebraic diagrammatic construction} (ADC) approach [9-13].
Another return of this is study will be provided by the prediction of new shell closures in
neutron-rich even-even nuclei, identified through the local maxima in the energy of the $2_1^+$
state and in the related electric quadrupole transition probability, $B(E2,0_1^+\rightarrow 2_1^+)$ [14].
[1] L.P. Gorkov, Sov. Phys. JETP 34, 3, 505-508 (1958).
[2] V. Somà, T. Duguet and C. Barbieri, Phys. Rev. C 84, 064317 (2011).
[3] V. Somà, A. Cipollone, C. Barbieri, P. Navrátil and T. Duguet, Phys. Rev. C 89, 061301(R) (2014).
[4] V. Somà, C. Barbieri, T. Duguet and P. Navrátil, Eur. Phys. J. A 57, 135 (2021).
[5] M. Rosenbusch et al., Phys. Rev. Lett. 114, 202501 (2015).
[6] S. Chen et al., Phys. Rev. Lett. 123, 142501 (2019).
[7] Y.L. Sun et al., Phys. Lett. B 802, 135215 (2020).
[8] P.H.P. Harbach, M. Wormit and A. Dreuw, J. Chem. Phys. 141, 064113 (2014).
[9] A. Dreuw and M. Wormit, Comput. Mol. Sci. 5, 82-95 (2015).
[10] J. Schirmer, Phys. Rev. A 26, 2395-2416 (1982).
[11] A.B. Trofimov, G. Stelter and J. Schirmer, J. Chem. Phys. 111, 9982-9999 (1999).
[12] J. Brand and L.S. Cederbaum, Adv. Quantum Chem. 38, 65-120 (2000).
[13] A.B. Trofimov, G. Stelter and J. Schirmer, J. Chem. Phys. 117, 6402-6409 (2002).
[14] I. Bentley, Y. Colón Rodríguez, S. Cunningham and A. Aprahamian, Phys. Rev. C 93, 044337 (2016).
|