Résumé |
Microorganisms living in the ocean can be subject to strong turbulence with cell division times in the middle of a Kolmogorov-like cascade of eddy turnover times. We explore the dynamics of a Fisher equation describing cell proliferation in one and two dimensions, as well as turbulent advection and diffusion. Because of inertial effects and cell buoyancy, we argue that the effective advecting velocity field is compressible. For strong enough compressible turbulence, bacteria, for example, can track, in a quasi-localized fashion (with remarkably long persistence times), sinks in the turbulent field. An important consequence is a large reduction in the carrying capacity of the fluid medium. |