Résumé |
The system of few identical fermions interacting resonantly with a distinguishable atom exhibits a rich and interesting physics, including universal states and the celebrated Efimov effect.
The (2+1) system, composed of two heavy fermions and lighter atom, supports a universal trimer state if the ratio of the particle masses exceeds critical value. For even larger mass ratio the system becomes Efimovian, introducing a three-body scale and showing geometric series of bound states.
Interestingly, this trend continues in the (3+1) system as well as in the (4+1) system, having their own universal states and pure (N+1)-body Efimov effects.
Adding another particle, however, this series seems to stop. This should be a sign of a shell structure and screening effects, which may shed light on the crossover from the few-body systems to the many-body polaron case. |