Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Série MATH-IHES
Domaines hep-th
Date Lundi 10 Décembre 2018
Heure 16:30
Institut IHES
Salle Amphithéâtre Léon Motchane
Nom de l'orateur Tapie
Prenom de l'orateur Samuel
Addresse email de l'orateur
Institution de l'orateur Université de Nantes
Titre Growth gap, amenability and coverings
Résumé Let \Gamma; be a group acting by isometries on a proper metric space (X,d). The critical exponent \delta_\Gamma (X) is a number which measures the complexity of this action. The critical exponent of a subgroup \Gamma'<\Gamma; is hence smaller than the critical exponent of \Gamma. When does equality occur? It was shown in the 1980s by Brooks that if X is the real hyperbolic space, \Gamma' is a normal subgroup of \Gamma and \Gamma is convex-cocompact, then equality occurs if and only if \Gamma/\Gamma' is amenable. At the same time, Cohen and Grigorchuk proved an analogous result when \Gamma is a free group acting on its Cayley graph. When the action of \Gamma on X is not cocompact, showing that the equality of critical exponents is equivalent to the amenability of \Gamma/\Gamma' requires an additional assumption: a "growth gap at infinity". I will explain how, under this (optimal) assumption, we can generalize the result of Brooks to all groups \Gamma with a proper action on a Gromov hyperbolic space. Joint work with R. Coulon, R. Dougall and B. Schapira.
Numéro de preprint arXiv
Commentaires Séminaire Géométrie et groupes discrets
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]