Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Série MATH-IHES
Domaines math
Date Mercredi 30 Janvier 2019
Heure 16:30
Institut IHES
Salle Amphithéâtre Léon Motchane
Nom de l'orateur Monclair
Prenom de l'orateur Daniel
Addresse email de l'orateur
Institution de l'orateur Unniversité Paris-Sud
Titre Non-differentiability of limit sets in anti-de Sitter geometry
Résumé The study of Anosov representations deals with discrete subgroups of Lie groups that have a nice limit set, meaning that they share the dynamical properties of limit sets in hyperbolic geometry. However, the geometry of these limits sets is different: while limit sets in hyperbolic geometry have a fractal nature (e.g. non-integer Hausdorff dimension), some Anosov groups have a more regular limit set (e.g. C1 for Hitchin representations). My talk will focus on quasi-Fuchsian subgroups of SO(n,2), and show that the situation is intermediate: their limit sets are Lipschitz submanifolds, but not C1. I will discuss the two main steps of the proof. The first one classifies the possible Zariski closures of such groups. The second uses anti-de Sitter geometry in order to determine the limit cone of such a group with a C1 limit set. Based on joint work with Olivier Glorieux.
Numéro de preprint arXiv
Commentaires Séminaire Géométrie et groupes discrets
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]