Statut  Confirmé 
Série  MATHIHES 
Domaines  math 
Date  Mercredi 30 Janvier 2019 
Heure  16:30 
Institut  IHES 
Salle  Amphithéâtre Léon Motchane 
Nom de l'orateur  Monclair 
Prenom de l'orateur  Daniel 
Addresse email de l'orateur  
Institution de l'orateur  Unniversité ParisSud 
Titre  Nondifferentiability of limit sets in antide Sitter geometry 
Résumé  The study of Anosov representations deals with discrete subgroups of Lie groups that have a nice limit set, meaning that they share the dynamical properties of limit sets in hyperbolic geometry. However, the geometry of these limits sets is different: while limit sets in hyperbolic geometry have a fractal nature (e.g. noninteger Hausdorff dimension), some Anosov groups have a more regular limit set (e.g. C1 for Hitchin representations). My talk will focus on quasiFuchsian subgroups of SO(n,2), and show that the situation is intermediate: their limit sets are Lipschitz submanifolds, but not C1. I will discuss the two main steps of the proof. The first one classifies the possible Zariski closures of such groups. The second uses antide Sitter geometry in order to determine the limit cone of such a group with a C1 limit set. Based on joint work with Olivier Glorieux. 
Numéro de preprint arXiv  
Commentaires  Séminaire Géométrie et groupes discrets 
Fichiers attachés 
Pour obtenir l' affiche de ce séminaire : [ Postscript  PDF ]

[ English version ] 