Statut |
Confirmé |
Série |
STRINT |
Domaines |
hep-th |
Date |
Jeudi 25 Avril 2019 |
Heure |
11:30 |
Institut |
IPHT |
Salle |
Salle Itzyckson |
Nom de l'orateur |
Volin |
Prenom de l'orateur |
Dmytro |
Addresse email de l'orateur |
|
Institution de l'orateur |
Nordita Stockholm & Uppsala U. |
Titre |
Separated variables and wave functions for rational GL(N) spin chains |
Résumé |
We present a basis in which wave functions of integrable XXX spin chain
factorise into a product of Slater determinants of Baxter Q-functions. We
furthermore show that this basis is formed by eigenvectors of the B[good]-
operator and it is naturally labelled by Gelfand-Tsetlin patterns. The
discussion is valid for spin chains in any rectangular representation and
arbitrary rank of the GL(N) symmetry group. For symmetric powers of the
defining representation, one also observes a corollary that B[good]-operator
acting on a suitably chosen vacuum constructs the eigenstates of the Bethe
algebra. |
Numéro de preprint arXiv |
|
Commentaires |
|
Fichiers attachés |
|