Statut |
Confirmé |
Série |
SEM-DARBOUX |
Domaines |
hep-th |
Date |
Mercredi 6 Avril 2011 |
Heure |
15:30 |
Institut |
LPTHE |
Salle |
bibliothèque du LPTHE, tour 13, 4ème étage |
Nom de l'orateur |
Vergne |
Prenom de l'orateur |
Michèle |
Addresse email de l'orateur |
|
Institution de l'orateur |
IM Jussieu |
Titre |
Duistermaat-Heckman measures and the equivariant index |
Résumé |
Let $N$ be a symplectic manifold,
with a Hamiltonian action of the circle group $G$ and moment map $\mu:N\to R$.
Assume that the level sets of $\mu$ are compact manifolds.
The Duistermaat-Heckman measure is a locally polynomial function on $R$ (so called a spline) which measures the symplectic volume of the level sets $\mu^{-1}(t)/G$.
Similarly, we will show that an elliptic (or transversally elliptic) operator $D$
on a $G$-manifold $M$ produces a locally polynomial function on $R$ via the ``infinitesimal index" map.
The index of $D$ can be deduced from the knowledge of the infinitesimal index. |
Numéro de preprint arXiv |
1012.1049 |
Commentaires |
Horaire inhabituel ! |
Fichiers attachés |
|