|
Statut |
Confirmé |
|
Série |
MATH-IHES |
|
Domaines |
hep-th |
|
Date |
Mercredi 6 Juin 2018 |
|
Heure |
10:30 |
|
Institut |
IHES |
|
Salle |
Centre de conférences Marilyn et James Simons |
|
Nom de l'orateur |
Templier |
|
Prenom de l'orateur |
Nicolas |
|
Addresse email de l'orateur |
|
|
Institution de l'orateur |
Cornell University |
|
Titre |
On the Ramanujan conjecture for automorphic forms over function fields |
|
Résumé |
Let G be a reductive group over a function field of large enough characteristic. We prove the temperedness at unramified places of automorphic representations of G, subject to a local assumption at one place, stronger than supercuspidality. Such an assumption is necessary, as was first shown by Saito-Kurokawa and Howe-Piatetskii-Shapiro in the 70's. Our method relies on the l-adic geometry of Bun_G, and on trace formulas. Work with Will Sawin. |
|
Numéro de preprint arXiv |
|
|
Commentaires |
Séminaire de Géométrie Arithmétique Paris-Pékin-Tokyo |
|
Fichiers attachés |
|