|
Statut |
Confirmé |
|
Série |
MATH-IHES |
|
Domaines |
hep-th |
|
Date |
Mercredi 12 Décembre 2018 |
|
Heure |
10:00 |
|
Institut |
IHES |
|
Salle |
Centre de conférences Marilyn et James Simons |
|
Nom de l'orateur |
Chenevier |
|
Prenom de l'orateur |
Gaëtan |
|
Addresse email de l'orateur |
|
|
Institution de l'orateur |
CNRS, Université Paris-Sud |
|
Titre |
A higher weight (and automorphic) generalization of the Hermite-Minkowski theorem |
|
Résumé |
I will show that for any integer N, there are only finitely many cuspidal algebraic automorphic representations of GL_m over Q whose Artin conductor is N and whose "weights" are in the interval {0,...,23} (with m varying). Via the conjectural yoga between geometric Galois representations (or motives) and algebraic automorphic forms, this statement may be viewed as a generalization of the classical Hermite-Minkowski theorem in algebraic number theory. I will also discuss variants of these results when the base field Q is replaced by an arbitrary number field. |
|
Numéro de preprint arXiv |
|
|
Commentaires |
Séminaire de Géométrie Arithmétique Paris-Pékin-Tokyo |
|
Fichiers attachés |
|