Statut |
Confirmé |
Série |
SEM-DARBOUX |
Domaines |
hep-th |
Date |
Jeudi 17 Janvier 2019 |
Heure |
11:00 |
Institut |
LPTHE |
Salle |
bibliothèque du LPTHE, tour 13-14, 4eme étage |
Nom de l'orateur |
Boucksom |
Prenom de l'orateur |
Sebastien |
Addresse email de l'orateur |
sebastien [dot] boucksom [at] polytechnique [dot] edu |
Institution de l'orateur |
CMLS, Ecole Polytechnique |
Titre |
Kähler-Einstein metrics |
Résumé |
Kähler metrics are a special class of Riemannian metrics, defined on complex manifolds, and
locally expressed as the (complex) Hessian of a potential. Kähler metrics with constant Ricci
curvature are called Kähler-Einstein, and come in three flavors, according to the curvature
sign. I will review Aubin and Yau's classical existence and uniqueness results in the case of
negative and zero curvature (Calabi-Yau metrics), and describe some aspects of the Yau-
Tian-Donaldson conjecture, solved a few years ago, and which solves the existence problem
in the case of positive curvature (Fano manifolds). |
Numéro de preprint arXiv |
|
Commentaires |
|
Fichiers attachés |
|