Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Série MATH-IHES
Domaines math
Date Lundi 2 Mars 2020
Heure 15:30
Institut IHES
Salle Centre de conférences Marilyn et James Simons
Nom de l'orateur Nuiten
Prenom de l'orateur Joost-Jakob
Addresse email de l'orateur
Institution de l'orateur Montpellier
Titre Koszul Duality for Lie Algebroids
Résumé A classical principle in deformation theory asserts that any formal deformation problem over a field of characteristic zero is classified by a differential graded Lie algebra. Using the Koszul duality between Lie algebras and commutative algebras, Lurie and Pridham have given a more precise description of this principle: they establish an equivalence of categories between dg-Lie algebras and formal moduli problems indexed by Artin commutative dg-algebras. I will describe a variant of this result for deformation problems around schemes over a field of characteristic zero. In this case, there is an equivalence between the homotopy categories of dg-Lie algebroids and formal moduli problems on a derived scheme. This can be viewed as a derived version of the relation between Lie algebroids and formal groupoids.
Numéro de preprint arXiv
Commentaires Séminaire Géométrie et Quantification
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]