|
Statut |
Confirmé |
|
Série |
MATH-IHES |
|
Domaines |
math |
|
Date |
Lundi 2 Mars 2020 |
|
Heure |
15:30 |
|
Institut |
IHES |
|
Salle |
Centre de conférences Marilyn et James Simons |
|
Nom de l'orateur |
Nuiten |
|
Prenom de l'orateur |
Joost-Jakob |
|
Addresse email de l'orateur |
|
|
Institution de l'orateur |
Montpellier |
|
Titre |
Koszul Duality for Lie Algebroids |
|
Résumé |
A classical principle in deformation theory asserts that any formal deformation problem over a field of characteristic zero is classified by a differential graded Lie algebra. Using the Koszul duality between Lie algebras and commutative algebras, Lurie and Pridham have given a more precise description of this principle: they establish an equivalence of categories between dg-Lie algebras and formal moduli problems indexed by Artin commutative dg-algebras. I will describe a variant of this result for deformation problems around schemes over a field of characteristic zero. In this case, there is an equivalence between the homotopy categories of dg-Lie algebroids and formal moduli problems on a derived scheme. This can be viewed as a derived version of the relation between Lie algebroids and formal groupoids. |
|
Numéro de preprint arXiv |
|
|
Commentaires |
Séminaire Géométrie et Quantification |
|
Fichiers attachés |
|