Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Série LPTMS
Domaines cond-mat.stat-mech
Date Mardi 28 Mars 2023
Heure 14:00
Institut LPTMS
Salle Salle des séminaires du FAST et du LPTMS, bâtiment Pascal n°530
Nom de l'orateur Malatesta
Prenom de l'orateur Enrico
Addresse email de l'orateur
Institution de l'orateur Bocconi University
Titre Structure and connectivity of the solution landscape of non-convex neural networks
Résumé The characterization of the structure of the manifold of low-energy lying states in neural networks is among the most fundamental theoretical questions in machine learning. In recent years, many empirical studies on the landscape of neural networks and constraint satisfaction problem have shown that the low-lying configurations are often found in complex connected structures, where zero-energy paths between pairs of distant solutions can be constructed. In this talk, I will discuss the geometrical organization and the connectivity properties of solutions in two linear neural network models having respectively binary and continuous weights: the "binary'' and the" negative perceptron''. I will show that wide flat minima arise as complex extensive structures from the coalescence of minima around "high-margin'' (i.e. locally robust) configurations [1]. Moreover, I will introduce a novel analytical method for characterizing the typical energy barriers between groups of configurations sampled from the zero-temperature measure of the problem [2]. In the negative perceptron case, we find that, despite the overall non-convexity of the space of solutions, below a critical fraction of constraints $\alpha_\star$ the geodesic path between any solution and the robust solutions of the problem, located in the interior of the solution space, remains strictly zero-energy. The value of $\alpha_\star$ where this simple connectivity property breaks down is compatible with the point at which the dense core of solutions fragments in multiple smaller pieces [3]. References: [1] C. Baldassi, C. Lauditi, E. M. Malatesta, G. Perugini, and R. Zecchina, Physical Review Letters 127, 278301 (2021). [2] B. L. Annesi, C. Lauditi, C. Lucibello, E. M. Malatesta, G. Perugini, F. Pittorino, and L. Saglietti, In preparation (2023). [3] C. Baldassi, E. M. Malatesta, G. Perugini, and R. Zecchina, In preparation (2023).
Numéro de preprint arXiv
Commentaires Hybrid: onsite seminar + zoom. For zoom info, please write to valentina.ros@universite-paris-saclay.fr or check LPTMS website
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]