Status  Confirmed 
Seminar Series  COURS 
Subjects  math.AG 
Date  Friday 26 January 2018 
Time  10:00 
Institute  IPHT 
Seminar Room  Salle Claude Itzykson, Bât. 774 
Speaker's Last Name  Bertrand Eynard 
Speaker's First Name  
Speaker's Email Address  
Speaker's Institution  IPhT 
Title  Riemann surfaces (3/5) 
Abstract  Algebraic equations are widespread in mathematics and physics, and the geometry of their spaces of solutions can be complicated. In the case of an equation of two complex variables, the space of solutions is a Riemann surface. \par We will provide basic tools (going back to Riemann) for studying algebraic equations and describing the geometry of compact Riemann surfaces. \par We will consider a Riemann surface defined from the solution locus of a polynomial equation $P(x,y)=0$ in $\mathbb{C} \times \mathbb{C}$. We will study its topology and geometry, and learn how to integrate differential forms along closed contours. Then we will describe the moduli space of Riemann surfaces with a given topology: its dimension, topology, etc. \par We will introduce some of the many tools that have been invented since the time of Riemann for studying these objects. We will partly follow the Mumford Tata lectures, the Fay lectures, and the FarkasKra book. \\ \\ The plan is: \\  Compact Riemann surfaces, charts, atlas, toplogy. Meromorphic functions and oneforms. Theorems on poles and residues. Newton's polygon. \\  Integrals, periods, Abel map, Jacobian, divisors. Theta functions, prime form, fundamental form. Basis of cycles, homology and cohomology. \\  Moduli spaces of Riemann surfaces. DeligneMumford compactification, Chern classes, tautological ring. Kontsevich integral and KdV hierarchy. \\  If times permits: fiber bundles, Hitchin systems, link to integrable systems. 
arXiv Preprint Number  
Comments  https://courses.ipht.cnrs.fr/?q=fr/node/195 
Attachments 
To Generate a poster for this seminar : [ Postscript  PDF ]

[ English version ] 