Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Status Confirmed
Seminar Series SEM-LKB
Subjects quant-ph
Date Wednesday 26 June 2024
Time 11:00
Institute LKB
Seminar Room Amphi Budé – Collège de France – 11 Place Marcelin Berthelot – 75005
Speaker's Last Name Ohmori
Speaker's First Name Kenji
Speaker's Email Address
Speaker's Institution Institute for Molecular Science (IMS), National Institutes of Natural Sciences
Title Ultrafast quantum simulation and quantum computing with ultracold atom arrays at quantum speed limit
Abstract Many-body correlations drive a variety of important quantum phenomena and quantum machines including superconductivity and magnetism in condensed matter as well as quantum computers. Understanding and controlling quantum many-body correlations is thus one of the central goals of modern science and technology. My research group has recently pioneered a novel pathway towards this goal with nearby ultracold atoms excited with an ultrashort laser pulse to a Rydberg state far beyond the Rydberg blockade regime [1-7]. We first applied our ultrafast coherent control with attosecond precision [2,3] to a random ensemble of those Rydberg atoms in an optical dipole trap, and successfully observed and controlled their strongly correlated electron dynamics on a sub-nanosecond timescale [1]. This new approach is now applied to arbitrary atom arrays assembled with optical lattices or optical tweezers that develop into a pathbreaking platform for quantum simulation and quantum computing on an ultrafast timescale [4-7]. In this ultrafast quantum computing, as schematically shown in Fig. 1, we have recently succeeded in executing a controlled-Z gate, a conditional two-qubit gate essential for quantum computing, in only 6.5 nanoseconds at quantum speed limit, where the gate speed is solely determined by the interaction strength between two qubits [5]. This is faster than any other two-qubit gates with cold-atom hardware by two orders of magnitude. It is also two orders of magnitude faster than the noise from the external environment and operating lasers, whose timescale is in general 1 microsecond or slower, and thus can be safely isolated from the noise. Moreover, this two-qubit gate is faster than the fast two-qubit gate demonstrated recently by “Google AI Quantum” with superconducting qubits [8]. References [1] N. Takei et al., Nature Commun. 7, 13449 (2016). Highlighted by Science 354, 1388 (2016); IOP (2016). [2] H. Katsuki et al., Acc. Chem. Res. 51, 1174 (2018). [3] C. Liu et al., Phys. Rev. Lett. 121, 173201 (2018). [4] M. Mizoguchi et al., Phys. Rev. Lett. 124, 253201 (2020). [5] Y. Chew et al., Nature Photonics 16, 724 (2022). (Front Cover Highlight) [6] V. Bharti et al., Phys. Rev. Lett. 131, 123201 (2023). [7] V. Bharti et al., arXiv:2311.15575 (2023). [8] B. Foxen et al., Phys. Rev. Lett. 125, 120504 (2020).
arXiv Preprint Number

To Generate a poster for this seminar : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]