|  
                      Statut  | 
                      Confirmé                  | 
                      |  
                      Série  | 
                        IPHT-PHM                   | 
                      |  
                      Domaines  | 
                      math-ph                  | 
                      |  
                      Date  | 
                      Lundi 16 Septembre 2024                  | 
                      |  
                      Heure  | 
                      11:00                  | 
                      |  
                      Institut  | 
                      
 IPHT                  | 
                      |  
                      Salle  | 
                      Salle Claude Itzykson, Bât. 774                  | 
                      |  
                      Nom de l'orateur  | 
                      Lance Dixon                  | 
                      |  
                      Prenom de l'orateur  | 
                                        | 
                      |  
                      Addresse email de l'orateur  | 
                                        | 
                      |  
                      Institution de l'orateur  | 
                      SLAC                  | 
                      |  
                      Titre  | 
                      ?AI for Analytic Amplitudes?                  | 
                      |  
                      Résumé  | 
                      > Scattering amplitudes at high loop orders are remarkably difficult for humans to compute.  Can machines do any better?   As a first exercise, we map a set of scattering amplitudes into a âlanguage-likeâ representation using the symbol associated with multiple polylogarithms.  Then we train a transformer-based model (think ChatGPT) to predict (integer) coefficients of âwordsâ in the symbol.  Such models can also learn correlations between coefficients at different loop orders.   I also discuss the next phase(s) of this work, i.e. whether one can predict the next loop order from information gleaned at lower orders.
>                    | 
                      |  
                      Numéro de preprint arXiv  | 
                                        | 
                      |  
                      Commentaires  | 
                                        | 
                      |  
                      Fichiers attachés  | 
                                        |