|
Statut |
Confirmé |
|
Série |
IPHT-PHM |
|
Domaines |
math-ph |
|
Date |
Lundi 16 Septembre 2024 |
|
Heure |
11:00 |
|
Institut |
IPHT |
|
Salle |
Salle Claude Itzykson, Bât. 774 |
|
Nom de l'orateur |
Lance Dixon |
|
Prenom de l'orateur |
|
|
Addresse email de l'orateur |
|
|
Institution de l'orateur |
SLAC |
|
Titre |
?AI for Analytic Amplitudes? |
|
Résumé |
> Scattering amplitudes at high loop orders are remarkably difficult for humans to compute. Can machines do any better? As a first exercise, we map a set of scattering amplitudes into a âlanguage-likeâ representation using the symbol associated with multiple polylogarithms. Then we train a transformer-based model (think ChatGPT) to predict (integer) coefficients of âwordsâ in the symbol. Such models can also learn correlations between coefficients at different loop orders. I also discuss the next phase(s) of this work, i.e. whether one can predict the next loop order from information gleaned at lower orders.
> |
|
Numéro de preprint arXiv |
|
|
Commentaires |
|
|
Fichiers attachés |
|