Statut | Confirmé |
Série | MATH-IHES |
Domaines | math |
Date | Lundi 20 Janvier 2025 |
Heure | 14:00 |
Institut | IHES |
Salle | Amphithéâtre Léon Motchane |
Nom de l'orateur | Parreau |
Prenom de l'orateur | Anne |
Addresse email de l'orateur | |
Institution de l'orateur | Université Grenoble Alpes |
Titre | Hilbert Geometry over Non-Archimedean Ordered Fields |
Résumé | I will explain how convex projective geometry over non-Archimedean ordered fields may be used to study large scale properties of individual real Hilbert geometries and degenerations of convex projective actions, using a projective geometry version of ultralimits. Non-Archimedean convex subsets have a naturally associated quotient Hilbert metric space. In the case of ultralimits, we show that it is the ultralimit of the real Hilbert metric spaces under a natural non-degeneracy condition. I will present some examples and give a full description of the Hilbert metric space for non-Archimedean polytopes defined over R, which correspond to the asymptotic cones of a fixed real polytope. This is joint work with Xenia Flamm. |
Numéro de preprint arXiv | |
Commentaires | Séminaire Géométrie et groupes discrets |
Fichiers attachés |
Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]
|
[ English version ] |