Statut |
Confirmé |
Série |
MATH-IHES |
Domaines |
math |
Date |
Lundi 20 Janvier 2025 |
Heure |
16:00 |
Institut |
IHES |
Salle |
Amphithéâtre Léon Motchane |
Nom de l'orateur |
Benard |
Prenom de l'orateur |
Timothee |
Addresse email de l'orateur |
|
Institution de l'orateur |
CNRS & Université Paris-Nord |
Titre |
Diophantine Approximation and Random Walks on the Modular Surface |
Résumé |
Khintchine's theorem is a key result in Diophantine approximation. Given a positive non-increasing function f defined over the integers, it states that the set of real numbers that are f-approximable has zero or full Lebesgue measure depending on whether the series of terms (f(n))n converges or diverges. I will present a recent work in collaboration with Weikun He and Han Zhang in which we extend Khintchine's theorem to any self-similar probability measure on the real line. The argument involves the quantitative equidistribution of upper triangular random walks on SL(2,R)/SL(2,Z). |
Numéro de preprint arXiv |
|
Commentaires |
Séminaire Géométrie et groupes discrets |
Fichiers attachés |
|