Statut | Confirmé |
Série | MATH-IHES |
Domaines | math |
Date | Lundi 20 Janvier 2025 |
Heure | 16:00 |
Institut | IHES |
Salle | Amphithéâtre Léon Motchane |
Nom de l'orateur | Benard |
Prenom de l'orateur | Timothee |
Addresse email de l'orateur | |
Institution de l'orateur | CNRS & Université Paris-Nord |
Titre | Diophantine Approximation and Random Walks on the Modular Surface |
Résumé | Khintchine's theorem is a key result in Diophantine approximation. Given a positive non-increasing function f defined over the integers, it states that the set of real numbers that are f-approximable has zero or full Lebesgue measure depending on whether the series of terms (f(n))n converges or diverges. I will present a recent work in collaboration with Weikun He and Han Zhang in which we extend Khintchine's theorem to any self-similar probability measure on the real line. The argument involves the quantitative equidistribution of upper triangular random walks on SL(2,R)/SL(2,Z). |
Numéro de preprint arXiv | |
Commentaires | Séminaire Géométrie et groupes discrets |
Fichiers attachés |
Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]
|
[ English version ] |